PENGENALAN WAJAH DUA DIMENSI MENGGUNAKAN MULTI-LAYER PERCEPTRON BERDASARKAN NILAI PCA DAN LDA
نویسندگان
چکیده
منابع مشابه
Visualization of Learning in Multi-layer Perceptron Networks using PCA
This article is concerned with the use of scientific visualization methods for the analysis of feedforward neural networks. Inevitably, the kinds of data associated with the design and implementation of neural networks are of very high dimensionality, presenting a major challenge for visualization. A method is described using the well-known statistical technique of Principal Component Analysis....
متن کاملKlasifikasi Data Cardiotocography Dengan Integrasi Metode Neural Network Dan Particle Swarm Optimization
Backpropagation (BP) adalah sebuah metode yang digunakan dalam training Neural Network (NN) untuk menentukan parameter bobot yang sesuai. Proses penentuan parameter bobot dengan menggunakan metode backpropagation sangat dipengaruhi oleh pemilihan nilai learning rate (LR)-nya. Penggunaan nilai learning rate yang kurang optimal berdampak pada waktu komputasi yang lama atau akurasi klasifikasi yan...
متن کاملNew full adders using multi-layer perceptron network
How to reconfigure a logic gate for a variety of functions is an interesting topic. In this paper, a different method of designing logic gates are proposed. Initially, due to the training ability of the multilayer perceptron neural network, it was used to create a new type of logic and full adder gates. In this method, the perceptron network was trained and then tested. This network was 100% ac...
متن کاملPCA versus LDA
In the context of the appearance-based paradigm for object recognition, it is generally believed that algorithms based on LDA (Linear Discriminant Analysis) are superior to those based on PCA (Principal Components Analysis). In this communication we show that this is not always the case. We present our case rst by using intuitively plausible arguments and then by showing actual results on a fac...
متن کاملMissing Data Handling in Multi-Layer Perceptron
Multi layer perceptron with back propagation algorithm is popular and more used than other neural network types in various fields of investigation as a non-linear predictor. Though MLP can solve complex and non-linear problems, it cannot use missing data for training directly. We propose a training algorithm with incomplete pattern data using conventional MLP network. Focusing on the fact that ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Komputa : Jurnal Ilmiah Komputer dan Informatika
سال: 2013
ISSN: 2715-7849,2089-9033
DOI: 10.34010/komputa.v2i1.77